

06. Kinematics, inverse kinematics,
Programming of a simulated robotic arm

. Warning

Test 2 on December 8.

Rehearsal

3D transformations

e Position: 3 element offset vector

PN
(— +Y Axis
\

(|

|
/\.
/

R |
+Z Axis \’J: \\ X Axis
/N~ > -
e
\

\
)
\ | Right-Hand Rule

e Orientation: 3 x 3 rotation matrix

» additional orientation representations: Euler angles, RPY, angle axis,
quaternion

* Pose: 4 x 4 transformation matrix
* Coordinate frame: origin, 3 axis, 3 base vector, right-hand rule
* Homogeneous transformations: rotation and translation together

* e.g. \(\mathbf{R}\) for rotation and \(\mathbf{v}\) for translation:

\[\mathbf{T} = \left[\matrix{\mathbf{R} & \mathbf{v}\\\mathbf{0} & 1 }\right]
= \left[\matrix{r {1,1} &r {1,2} &r {1,3} & v x\\r {2,1} &r {2,2} &r {2,3} &
v y\r {3,1} &r {3,2} &r {3,3} & v z2\W\ 0 & 0 & 0 & 1 }\right] \]

* Homogeneous coordinates:

* Vector: add 0, \(\mathbf{a H}=\left[\matrix{\mathbf{a} \\
OH\right]=\left[\matrix{a x\\a_y \\ a_z \\ 0 }\right]\)

e Point: add 1, \(\mathbf{p H}=\left[\matrix{\mathbf{p} \\
1 Nright]=\left[\matrix{p x \\p y \\ p_z \\ 1 }\right]\)

* Applying transformations is simpler:

\[\mathbf{g} = \mathbf{R}\mathbf{p} + \mathbf{v} \to \left[\matrix{\mathbf{q}
\\ 1 N\right] = \left[\matrix{\mathbf{R} & \mathbf{v}\\\mathbf{0} & 1 }\right]
\left[\matrix {\mathbf{p} \\ 1 H\right] \]

* Degree of freedom (DoF): number of independent variables (quantities).

Robotics basics

* Robot structure: segments (link) and joints

» Task space (Cartesian space):

* Three-dimensional space where the task, trajectories, obstacles, etc. are
defined.

¢ TCP (Tool Center Point): coordinate frame fixed to the end effector
* Base/world frame
* Joint space:

* Quantities assigned to the robot's joints, which can be interpreted by the
robot's low-level control system.

* Joint angles, velocities, accelerations, torques...

Lecture

Kinematics, inverse kinematics

Kinematics

. Def. Kinematics

Calculating the pose of the TCP (or anything else) from the joint coordinates.

¢ Kinematic model
* Denavit--Hartenberg (DH) convention

e URDF (Unified Robotics Description Format, XML-based)

If the coordinate systems assigned to the segments are \(base, 1, 2, 3, ..., TCP\),
the transfomrms between adjacent segments \(i\) and \(i+1\) are \(T {i+1,i}

(g _{i+1})\) (which is a function of the angle of the joint between them), the
transfomrs between the base frame and TCP can be written as (for a robot with \
(n\) joints):

\[T {TCPbase}(q 1, \cdots, g n) =T {TCPn-1}(q {n})\cdot T {n-1,n-2}
(@ {n-1})\cdots T {2,1}(q 2) \cdot T {1,base}(qg 1) \cdot base \]

Inverse kinematics

. Def. Inverse kinematics

Calculate the joint coordinates to achieve (desired) TCP (or any other) pose.

Differential inverse kinematics

. Def. Differential inverse kinematics

Which change in the joint coordinates achieves the desired small change in the
TCP pose (rotation and translation).

e Jacobi matrix (Jacobian): a matrix of first-order partial derivatives of a
vector-valued function.

\[\mathbf{J} = \left[\matrix{\frac{\partial x 1}{\partial q 1} & \frac{\partial
x_1}{\partial q 2} &\frac{\partial x 1}{\partial g 3} & \dots &\frac{\partial
x_1}{\partial g n} \\ \frac{\partial x 2} {\partial q 1} & \frac{\partial x 2}
{\partial g 2} &\frac{\partial x 2} {\partial g 3} & \dots &\frac{\partial x 2}
{\partial g n} \\ \frac{\partial x 3} {\partial g 1} & \frac{\partial x 3} {\partial
q 2} &\frac{\partial x 3} {\partial g 3} & \dots &\frac{\partial x 3} {\partial

g n} \\ \vdots &\vdots &\vdots &\ddots &\vdots \\ \frac{\partial x m} {\partial
g 1} & \frac{\partial x m}{\partial g 2} &\frac{\partial x m}{\partial g 3} &
\dots &\frac{\partial x m}{\partial g n} \\}\right] \]

» Jacobi matrix significance in robotics: gives the relationship between joint
velocities and TCP velocity.

\[\left[\matrix{\mathbf{v} \\ \mathbf{\omega} }\right] =\mathbf{J}
(\mathbf{q})\cdot \mathbf{\dot{q}} \]

,where \(\mathbf{v}\) is the linear velocity of the TCP, \(\mathbf{\omega}\) is
the angular velocity of the TCP, and \(\mathbf{q}\) is the configuration of the
robot.

. Def. Configuration

The vector or array containing the current joint angles of the robot.

Inverse kinematics using Jacobian inverse

1. Calculate the difference between the desired and the current position: \
(\Delta\mathbf{r} = \mathbf{r} {desired} - \mathbf{r} 0\)

2. Calculate the difference in rotations: \(\Delta\mathbf{R} = \mathbf{R}
_{desired}\mathbf{R} {0}~ {T}\), then convert to axis angle representation \
((\mathbf{t},\phi)\)

3. Compute \(\Delta\mathbf{ q}=\mathbf{J} ™ {-1}(\mathbf{q 0})\cdot
\left[\matrix{k 1 \cdot \Delta\mathbf{r} \\ k 2 \cdot \mathbf{\omega} }\right]
\), where the inverse can be pseudo-inverse or transposed

4. \(\mathbf{q} {better} = \mathbf{q} {0} + \Delta\mathbf{q}\)

Exercise

1: UR install

1. Install the dependencies and the UR driver.

Jopt/ros/humble/share/ur_description/rviz/view_robot.rviz*-RViz - O X
File Panels Help

(Minteract | “$*Move Camera [JSelect <@-FocusCamera ==Measure

Reset 31fps

sudo apt update

sudo apt upgrade

sudo apt-get install ros-humble-ur python3-pip
pip3 install kinpy

. Tip

Also download the source of the kinpy package, it might be useful for
understanding the API: https://pypi.org/project/kinpy/

2. Download the zip containing your source files from Moodle (ur ros2 course.zip).
Copy the view urlaunch.py file to the ros2 course/launch folder, and
topic_latcher.py to ros2 course/ros2 course . Add the following lines to setup.py
(launch and entry point):

import os
from glob import glob

...

data files=[
(‘share/ament_index/resource index/packages',
['resource/' + package name]),
(‘share/' + package name, ['package.xml']),
Include all launch files.
(os.path.join('share’, package name),
glob('launch/*launch.[pxy][yma]*'))
1

...

entry points={
‘console scripts': [
..
'topic_latcher = ros2_course.topic latcher:main’,

17

3. Add the ros2launch dependency to the package.xml file:

<exec_depend>ros2launch</exec_depend>

4. Build the workspace as usual:

cd ~/ros2 ws
colcon build --symlink-install

5. Start the simulator, move the joints using the Joint State Publisher GUI.

ros2 launch ros2_course view_ur.launch.py ur type:=urbe

. Tip

Try other robots using argument ur type (ur3, ur3e, ur5, urbe, url0, urlOe,
url6e, ur20).

2: Move the robot in joint space

1. Create a new python source file named ur controller.py in ~/ros2 ws/src/
ros2 _course/ros2 course folder. Specify the new entry point in setup.py in the
usual way. Subscribe to the topic publishing the robot's joint angles
(configuration). Create publisher for the topic that can be used to set the joint
angles.

/joint states

/set joint states

2. Move the robot to the configuration q =[-1.28, 4.41, 1.54, -1.16, -1.56, 0.0] .

3. Kinematics

1. The simulator publishes the urdf description of the robot in a topic. Subscribe
to this topic.

/robot description latch

2. Import the kinpy package and create the kinematic chain based on the urdf
describing the robot in the callback function just implemented:

import kinpy as kp

...

self.chain = kp.build serial chain from urdf(self.desc, 'tool0')

print(self.chain.get joint parameter names())
print(self.chain)

3. Calculate and print the TCP pose in the given configuration using the kinpy
package.

p = chain.forward kinematics(q)

4: Inverse kinematics with Jacobian inverse method

Write a method that implements the inverse kinematics problem on the robot
using the Jacobian inverse method presented in the lecture. The orientation is
ignored. Move the TCP to the position (0.50, -0.60, 0.20) .

1. Write a loop with a stop condition for the length of delta r and rclpy.ok() .

2. Calculate the difference between the desired and the current TCP positions
(delta r). Scale with the constant k 1.

3. Set omega to [0.0, 0.0, 0.0] (ignore orientation).

4. Concatenate delta r and omega .

5. Calculate the Jacobian matrix in the given configuration using the function

kp.jacobian.calc jacobian(...) .

6. Calculate the pseudo-inverse of the Jacobian matrix np.linalg.pinv(...) .

7. Calculate delta g using the above formula.

8. Increment the joint angles with the obtained values.

Plot the TCP trajectory using Matplotlib.

import matplotlib.pyplot as plt
...

Plot trajectory

ax = plt.figure().add_subplot(projection="'3d")

ax.plot(x, y, z, label='TCP trajectory', 1s='-', marker=".")
ax.legend()

ax.set xlabel('x [m]")

ax.set_ylabel('y [m]")

ax.set_zlabel('z [m]")

plt.show()

Bonus: Inverse kinematics with orientation

Complete the solution to the previous problem by including orientation in the
inverse kinematics calculation.

Useful links

* https://github.com/UniversalRobots/Universal Robots ROS2 Driver/tree/
humble

* https://docs.ros.org/en/ros2_packages/humble/api/ur robot driver/
usage.html#usage-with-official-ur-simulator

* https://github.com/UniversalRobots/Universal Robots Client Library
* https://pypi.org/project/kinpy/
* https://en.wikipedia.org/wiki/Axis%E2%80%93angle representation

* https://www.rosroboticslearning.com/jacobian

	06. Kinematics, inverse kinematics, Programming of a simulated robotic arm
	Rehearsal
	3D transformations
	Robotics basics

	Lecture
	Kinematics, inverse kinematics
	Kinematics
	Inverse kinematics
	Differential inverse kinematics
	Inverse kinematics using Jacobian inverse

	Exercise
	1: UR install
	2: Move the robot in joint space
	3. Kinematics
	4: Inverse kinematics with Jacobian inverse method
	Bonus: Inverse kinematics with orientation

	Useful links

