
Skip to content

Skip to content

04. Principles of robotics. Programming a

da Vinci surgical robot in simulated

environment.

Lecture

Test 1 (ROS principles, publisher, subscriber. Python principles. Principles of

robotics.) October 27.

Rigid body motion

A rigid body is defined as a body on which the distance between two points

remains constant in time regardless of the force applied on it.

Shape and the volume of the rigid bodies are also constant.

The pose of a rigid body can be given by the three coordinates of three of its

points that do not lie on the same straight line.

Warning

Def. Rigid body

•

•

Skip to content

The pose of a rigid body can be described in a more expressive way by the

three coordinates of one of its points chosen arbitrarily position and the

body's orientation.

The motion of rigid bodies is composed by two elemental motions:

translation and rotation.

During translation, all points of the body move along straight, parallel lines.

During rotation, the position of the points of the rotational axis are constant,

and the other points of the body move along circles in planes perpendicular to

the axis of rotation.

The free motion of rigid bodies can always be expressed as the superposition

of a translational motion and a rotation around a single axis.

•

•

•

•

•

Skip to content

3D transformations

Position: 3D offset vector

Orientation: 3 x 3 rotation matrix

further orientation representations: Euler-angles, RPY, angle axis,

quaternion

Pose: 4 × 4 (homogenous) transformation matrix

Frame: origin, 3 axes, 3 base vectors, right hand rule

Homogenous transformation: rotation and translation in one

transfromation

e.g., for the rotation \(\mathbf{R}\) and translation \(\mathbf{v}\):

Homogenous coordinates:

Vector: extended with 0, \(\mathbf{a_H}=\left[\matrix{\mathbf{a} \\

0}\right]=\left[\matrix{a_x \\ a_y \\ a_z \\ 0}\right]\)

Point: extended by 1, \(\mathbf{p_H}=\left[\matrix{\mathbf{p} \\

1}\right]=\left[\matrix{p_x \\ p_y \\ p_z \\ 1}\right]\)

Applying transfomrations is much easier:

Degrees of Freedom (DoF): the number of independent parameters.

•

•

•

•

•

•

•

\[\mathbf{T} = \left[\matrix{\mathbf{R} & \mathbf{v}\\\mathbf{0} & 1 }\right]

= \left[\matrix{r_{1,1} & r_{1,2} & r_{1,3} & v_x\\r_{2,1} & r_{2,2} & r_{2,3} &

v_y\\r_{3,1} & r_{3,2} & r_{3,3} & v_z\\\ 0 & 0 & 0 & 1 }\right] \]

•

•

•

•

\[\mathbf{q} = \mathbf{R}\mathbf{p} + \mathbf{v} \to \left[\matrix{\mathbf{q}

\\ 1}\right] = \left[\matrix{\mathbf{R} & \mathbf{v}\\\mathbf{0} & 1 }\right]

\left[\matrix{\mathbf{p} \\ 1}\right] \]

•

Skip to content

Principles of robotics

Robots are built of: segments (or links) és joints

Task space (or cartesian space):

3D space around us, where the task, endpoint trajectories, obstacles are

defined.

TCP (Tool Center Point): Frame fixed to the end effector of the robot.

Base frame, world frame

Joint space:

Properties or values regarding the joints.

Low-level controller.

Joint angles, joint velocities, accelerations, torques....

Python libraries

Numpy

Python library

High dimension arrays and matrices

•

•

•

•

•

•

•

•

•

•

•

Skip to content

Mathematical functions

If not installed:

Matplotlib

Visualization in python

Syntax similar to Matlab

•

import numpy as np

Creating ndarrays

a = np.zeros(3)

a.shape

a.shape=(3,1)

a = np.ones(5)

a = np.empty(10)

l = np.linspace(5, 10, 6)

r = np.array([1,2]) # ndarray from python list

r = np.array([[1,2],[3,4]])

type(r)

Indexing

l[0]

l[0:2]

l[-1]

r[:,0]

Operations on ndarrays

r_sin = np.sin(r)

np.max(r)

np.min(r)

np.sum(r)

np.mean(r)

np.std(r)

l < 7

l[l < 7]

np.where(l < 7)

p = np.linspace(1, 5, 6)

q = np.linspace(10, 14, 6)

s = p + q

s = p * q

s = p * 10

s = p + 10

s = p @ q # dot product

s = r.T

pip3 install numpy

•

•

Skip to content

If not installed:

Practice

1. dVRK ROS 2 install

The da Vinci Surgical System is used to perform minimally invasive surgeries by

teleoperation. The da Vinci Research Kit (DVRK) is an open-source hardware and

software platform, offers, amongst others, reading and writing all the joints of the

da Vinci, and also simulators for each arm. The DVRK software can be built as

follows.

Clone the dVRK (da Vinci Reserach Kit) using vcs into a new workspace, then

build it:

Add the following line to the end of the .bashrc file:

import numpy as np

from matplotlib import pyplot as plt

X = np.linspace(-np.pi, np.pi, 256)

C, S = np.cos(X), np.sin(X)

plt.plot(X, C)

plt.plot(X, S)

plt.show()

pip3 install matplotlib

1.

mkdir -p ~/dvrk2_ws/src

cd ~/dvrk2_ws/src

vcs import --input https://raw.githubusercontent.com/jhu-dvrk/dvrk_robot_ros2/devel/

dvrk-2.2.vcs --recursive cd ~/dvrk2_ws

cd ~/dvrk2_ws

colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release

source ~/dvrk2_ws/install/setup.bash

2.

source ~/dvrk2_ws/install/setup.bash

Skip to contentRun these commands in separate terminals to launch the simulation. Do not

forget to push the Home button in the DVRK console.

2. PSM subscriber

Create a new file named psm_grasp.py in the

~/ros2_ws/src/ros2_course/ros2_course folder. Add the new entry point to the

setup.py , as usually.

Check the topics and nodes of the simulator using the commands learned

earlier (rostopic list , rosrun rqt_graph rqt_graph , etc.). PSM1 publishes the pose

of the TCP and the angle of the jaws into the topics below. Subscribe to these

topic in psm_grasp.py and store the current values into variables.

Build and run the node:

3.

dVRK main console

ros2 run dvrk_robot dvrk_console_json -j ~/dvrk2_ws/install/sawIntuitiveResearchKitAll/

share/sawIntuitiveResearchKit/share/console/console-PSM1_KIN_SIMULATED.json

ROS 2 joint and robot state publishers

ros2 launch dvrk_model dvrk_state_publisher.launch.py arm:=PSM1

RViz

ros2 run rviz2 rviz2 -d ~/dvrk2_ws/install/dvrk_model/share/dvrk_model/rviz/PSM1.rviz

rqt_gui

ros2 run rqt_gui rqt_gui

1.

2.

/PSM1/measured_cp

/PSM1/jaw/measured_js

3.

cd ~/ros2_ws

colcon build --symlink-install

ros2 run ros2_course psm_grasp

Skip to content

3. Move the TCP along a linear trajectory

PSM1 expects commands regarding the pose of the TCP and the angle of the

jaws from the topics below. Create publishers to these topic in psm_grasp.py .

Implement a method that moves the TCP to the desired position along a linear

trajectory. Send the gripper to the position (0.0, 0.05, -0.12), leave the

orientation as it is. Let the sampling time dt be 0.01s.

Use the function np.linspace(start, stop, num) to create the array of t values (T).

This function can also be used to create the linear trajectory along the axes x,

y, z in separate arrays X, Y and Z.

1.

/PSM1/servo_cp

/PSM1/jaw/servo_jp

2.

def move_tcp_to(self, target, v, dt):

Tip

Skip to content

Write a method that can open and close the gripper jaws, also along a linear

trajectory.

4. Dummy marker

Write a node that creates a virtual marker that can be grasped

publishing visualization_msgs/Marker messages. Create a new file named

dummy_marker.py in the ~/ros2_ws/src/ros2_course/ros2_course folder. Add it to the

setup.py , as usually. Copy the following code into the file dummy_marker.py :

3.

def move_jaw_to(self, target, omega, dt):

1.

import rclpy

from rclpy.node import Node

from visualization_msgs.msg import Marker

class DummyMarker(Node):

 def __init__(self, position):

 super().__init__('minimal_publisher')

 self.position = position

 self.publisher_ = self.create_publisher(Marker, 'dummy_target_marker', 10)

 timer_period = 0.1 # seconds

 self.timer = self.create_timer(timer_period, self.timer_callback)

 self.i = 0

 i = 0

 def timer_callback(self):

 marker = Marker()

 marker.header.frame_id = 'PSM1_psm_base_link'

 marker.header.stamp = self.get_clock().now().to_msg()

 marker.ns = "dvrk_viz"

 marker.id = self.i

 marker.type = Marker.SPHERE

 marker.action = Marker.MODIFY

Skip to content

Build and run the node. Visualize the marker in RViz.

5. Grasp the marker

Subscribe to the topic with the marker position dummy_target_publisher the file

psm_grasp.py .

Implement a method in psm_grasp.py to grasp the generated marker with

PSM1.

 marker.pose.position.x = self.position[0]

 marker.pose.position.y = self.position[1]

 marker.pose.position.z = self.position[2]

 marker.pose.orientation.x = 0.0

 marker.pose.orientation.y = 0.0

 marker.pose.orientation.z = 0.0

 marker.pose.orientation.w = 1.0

 marker.scale.x = 0.008

 marker.scale.y = 0.008

 marker.scale.z = 0.008

 marker.color.a = 1.0 # Don't forget to set the alpha!

 marker.color.r = 0.0

 marker.color.g = 1.0

 marker.color.b = 0.0;

 self.publisher_.publish(marker)

 self.i += 1

def main(args=None):

 rclpy.init(args=args)

 marker_publisher = DummyMarker([-0.05, 0.08, -0.12])

 rclpy.spin(marker_publisher)

 # Destroy the node explicitly

 # (optional - otherwise it will be done automatically

 # when the garbage collector destroys the node object)

 marker_publisher.destroy_node()

 rclpy.shutdown()

if __name__ == '__main__':

 main()

2.

1.

2.

Skip to content

Some values tends to stuck in the simulator. Thus, at the beginning of the

program, it is a good idea to reset the arm:

Links

Download and compile dVRK 2

Marker examples

Numpy vector magnitude

Numpy linspace

Note

#Reset the arm

psm.move_tcp_to([0.0, 0.0, -0.12], 0.01, 0.01)

psm.move_jaw_to(0.0, 0.1, 0.01)

•

•

•

•

https://github.com/jhu-dvrk/sawIntuitiveResearchKit/wiki/BuildROS2
https://www.programcreek.com/python/example/88812/visualization_msgs.msg.Marker
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html

	04. Principles of robotics. Programming a da Vinci surgical robot in simulated environment.
	Lecture
	Rigid body motion
	3D transformations
	Principles of robotics
	Python libraries
	Numpy
	Matplotlib

	Practice
	1. dVRK ROS 2 install
	2. PSM subscriber
	3. Move the TCP along a linear trajectory
	4. Dummy marker
	5. Grasp the marker

	Links

