

03. Python principles, ROS Publisher,
ROS Subscriber

Lecture

Python principles

@, python

™

 Interpreted, high-level programming language
* Name tribute to the comedy group Monty Python
* Powerful, still easy to learn, easy to use

* Readability

* Whitespace indentation

* Dynamically-typed
* Garbage colector and reference counting
* Object oriented programming

» Used in: Al, web applications, scientific computing, and many other areas

* python3

Python syntax

import numpy as np
import math

class A:
def init (self, name):
self. name = name

def do _something(self):
will do something
print(self.name + " is doing something.")

def count_to(self, n):
count to n, tell if the number is odd or even
for i in range(n):
ifi% 2 ==0:
print(i + ", it's even.")
else:
print(i + ", it's odd.")

if name ==" main ":

a = A("John")
a.do_something()
a.count to(10)

Practice

1: Move the turtle in a straight line

1. Let's write a ROS node that moves the turtle forward along a straight line for
a given distance. Let's open a terminal. Let's create ~/ros2 ws/src/ros2 course/
ros2 course the turtlesim controller.py file in our directory:

TurtleSim

*““bash
cd ros2_ws/src/ros2_course/ros2_course
touch turtlesim controller.py

1. Add a new entry point in the setup.py file:

'turtlesim_controller = ros2 course.turtlesim_controller:main’,

1. Copy the skeleton of the program into turtlesim controller.py :

import math
import rclpy
from rclpy.node import Node

class TurtlesimController(Node):
def init (self):

super(). init (‘turtlesim_controller')

def go_straight(self, speed, distance):
Implement straght motion here

def main(args=None):
rclpy.init(args=args)
tc = TurtlesimController()

Destroy the node explicitly

(optional - otherwise it will be done automatically

when the garbage collector destroys the node object)
tc.destroy node()

rclpy.shutdown()

if name ==' main "

main()

1. Let's start a turtlesim node and then examine the topic, with which we can
control. In two separate terminal windows:

ros2 run turtlesim turtlesim node

ros2 topic list
ros2 topic info /turtlel/cmd_vel
ros2 interface show geometry msgs/msg/Twist

Or use rqt_gui :

ros2 run rqt gui rqt gui

2. Import the message type geometry msgs/msg/Twist and create the publisher in

turtlesim controller.py :

from geometry msgs.msg import Twist
#...

In the constructor:
self.twist pub = self.create publisher(Twist, '/turtlel/cmd vel', 10)

3. We implement the go straight method. Let's calculate how long it takes, so that
the turtle covers the given distance at the given speed. Publish a message with
which we set the speed, then wait for the calculated time, after that send
another message to reset the speed. A little help for using the API:

Create and publish msg
vel msg = Twist()
if distance > 0:

vel msg.linear.x = speed
else:

vel msg.linear.x = -speed
vel msg.linear.y = 0.0
vel msg.linear.z = 0.0
vel msg.angular.x = 0.0
vel msg.angular.y = 0.0
vel msg.angular.z = 0.0

Set loop rate
loop rate = self.create rate(100, self.get clock()) # Hz

Calculate time
#T= ..

Publish first msg and note time when to stop
self.twist_pub.publish(vel msg)

self.get _logger().info('Turtle started.')

when = self.get_clock().now() + rclpy.time.Duration(seconds=T)

Publish msg while the calculated time is up
while (some condition...) and rclpy.ok():
self.twist_pub.publish(vel msg)
self.get logger().info('On its way...")
rclpy.spin_once(self) # loop rate

turtle arrived, set velocity to 0

vel msg.linear.x = 0.0
self.twist_pub.publish(vel msg)

self.get_logger().info('Arrived to destination.')

4. Build and run the node:

cd ros2_ws
colcon build --symlink-install
ros2 run ros2_course turtlesim controller

2: Draw shapes

TurtleSim

1. Let's implement the method for turning with a given angle a in
turtlesim_controller.py , similar to straight motion.

def turn(self, omega, angle):
Implement rotation here

2. Let's implement the straight movement method of drawing a square with a
turtle and using the methods that perform the turn.

def draw_square(self, speed, omega, a):

3. Let's implement the method of drawing any regular shape with a turtle using
the methods that perform straight movement and turning.

def draw_poly(self, speed, omega, N, a):

3: Go to function

TurtleSim

1. Let's examine the topic on which turtlesim node publishes its current position.

ros2 topic list
ros2 topic info /turtlel/pose
ros2 interface show turtlesim/msg/Pose

Or use rqt gui:

ros2 run rqt_gui rqt_gui

2. Let's define a subscriber for the topic and write the callback function.

Imports
from turtlesim.msg import Pose

Constructor
self.pose = None
self.subscription = self.create subscription(
Pose,
'/turtlel/pose’,
self.cb_pose,
10)

New method for TurtlesimController
def cb_pose(self, msg):
self.pose = msg

1. We implement the go to method. Let's test it, call it from main.

...

Go to method
def go_to(self, speed, omega, %, y):
Wait for position to be received
loop rate = self.create rate(100, self.get clock()) # Hz
while self.pose is None and rclpy.ok():
self.get logger().info('Waiting for pose...")
rclpy.spin_once(self)

Stuff with atan2

Main

def main(args=None):
rclpy.init(args=args)
tc = TurtlesimController()

tc.go _to(1.0, 20.0, 2, 8)
tc.go_to(1.0, 20.0, 2, 2)
tc.go_to(1.0, 20.0, 3, 4)
tc.go to(1.0, 20.0, 6, 2)

Destroy the node explicitly

(optional - otherwise it will be done automatically

when the garbage collector destroys the node object)
tc.destroy node()

rclpy.shutdown()

TurtleSim

angle =
theta_1 - theta O

Extra: Advanced go to

Write a go to function that uses a proportional controller.

Useful links

» For loops in python
* Some python functions

e Turtlesim help

https://www.w3schools.com/python/python_for_loops.asp
https://docs.python.org/3.4/library/functions.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Introducing-Turtlesim/Introducing-Turtlesim.html

e atan?2

https://en.wikipedia.org/wiki/Atan2

	03. Python principles, ROS Publisher, ROS Subscriber
	Lecture
	Python principles
	Python syntax

	Practice
	1: Move the turtle in a straight line
	2: Draw shapes
	3: Go to function
	Extra: Advanced go to

	Useful links

