

02. Linux, ROS introduction

Lecture

Linux principles

* (Was) the only OS supported by ROS

» Security

 Efficieny

* Open-source

* Community support

* User freedom

* Distributions: Ubuntu, Linux Mint, Debian, etc.

* Terminal usage more dominant

. Suggestion
Install Terminator terminal emulator:

sudo apt update
sudo apt install terminator

Linux commands

See some basic commands below:

* Run as administrator with sudo

* Manual of command man, e.g. man cp

* Package management apt, €.g. apt update, apt install
* Navigation cd

 List directory contents Is

* Create file touch

* Copy file cp

* Move file mv

* Remove file rm

* Make directory mkdir

* Remove directory rmdir

* Make a file executable chmod +x <filename>
» Safe restart: Crtl + Alt + PrtScr + REISUB

* If not sure, just google the command

ROS 1 - ROS 2

* ROS 2 was rewritten from scratch

* More modular architecture

* Improved support for real-time systems

e Support for multiple communication protocols

* Better interoperability with other robotic systems

* Focus on standardization and industry collaboration
* No ROS Master

* No Devel space

* rclpy, rclcpp

¢ More structured code (Node class)

* Different build system
e Platforms: Windows, OS X, Linux

ROS principles

ROS workspace

. Colcon workspace

A folder where packages are modified, built, and installed.

* Source space:
* Source code of colcon packages

* Space where you can extract/checkout/clone source code for the packages
you want to build

* Build space

e Colcon is invoked here to build packages

* Colcon and CMake keep intermediate files here
* Install space:

* Each package will be installed here; by default each package will be
installed into a separate subdirectory

* Log space:

* Contains various logging information about each colcon invocation

. ROS package principle

Enough functionality to be useful, but not too much that the package is
heavyweight and difficult to use from other software.

. ROS dependencies

After cloning a new package, use the following command to install depenencies:

rosdep install --from-paths src --ignore-src -r -y

ROS package

* Main unit to organize software in ROS
* Buildable and redistributable unit of ROS code
* Consists of (in the case of Python packages):
* package.xml file containing meta information about the package
* name
* version
 description
* dependencies
e etc.
* setup.py containing instructions for how to install the package

e setup.cfg is required when a package has executables, so ros2 run can find
them

* /<package name> - a directory with the same name as your package, used
by ROS 2 tools to find your package, contains init .py

e Anything else

* ros2 run turtlesim turtlesim node

. CMake

For CMake packages (C++), the package contents will be different.

Metapackage

Group of related packages

Package A

\
Package B

- package.xml
- setup.py
- setup.cfg
- A
- __init__.py
- python scripts

- ROS-independent libraries

- Launch files, config files...

ROS node

* Executable part of ROS:

* python scripts

e compiled C++ code
* A process that performs computation
* Inter-node communication:

* ROS topics (streams)

* ROS parameter server

* Remote Procedure Calls (RPC)

* ROS services

¢ ROS actions

* Meant to operate at a fine-grained scale

» Typically, a robot control system consists of many nodes, like:

» Trajectory planning

¢ Localization

Package C

* Read sensory data

* Process sensory data
e Motor control

» User interface

* etc.

ROS build system---Colcon

» System for building software packages in ROS

Environmental setup file

* setup.bash
* generated during init process of a new workspace
» extends shell environment

* ROS can find any resources that have been installed or built to that location

source ~/ros2_ws/install/setup.bash

Practice

1: Turtlesim

1. Start turtlesim node and turtle teleop key nodes with the following commands,

in separate terminal windows:

ros2 run turtlesim turtlesim node

ros2 run turtlesim turtle teleop key

. Tip

In Terminator, you can further divide the given window with Ctrl-Shift-O, Ctrl-
Shift-E key combinations. Ctrl-Shift-W closes the active window.

. Abort execution

Ctrl-C

2. Running the following ROS commands can provide useful information:

ros2 wtf

ros2 node list

ros2 node info /turtlesim

ros?2 topic list

ros2 topic info /turtlel/cmd_vel

ros2 interface show geometry msgs/msg/Twist
ros2 topic echo /turtlel/cmd vel

3. Start rqt gui with the following command:

ros2 run rqt_gui rqt_gui

4. Display the running nodes and topics in rqt gui: Plugins — Introspection —
Node Graph.

5. Publish to the /turtlel/cmd vel topic also using rqt gui: Plugins — Topics —
Message Publisher.

Default - rqt - o X

File Plugins Running Perspectives Help
[>>Message Publisher DC® -00
& Topic *1/cmd_vel ~ | Type /msg/Twist ~ | Freq. 1 v |Hz |qp|| == | G

topic type rate expression
v V| [turtle1/cmd_vel Twist 1.00
~ linear geometry_msgs/Vector3
X double 2.0
y double 0.0
z double 0.0
~ angular geometry_msgs/Vector3
X double 0.0
y double 0.0
z double 1.0

2: ROS 2 workspace creation

1. Let's create a new ROS2 workspace with the name ros2 ws.

mkdir -p ~/ros2_ws/src

3: ROS 2 package creation

1. Let's create a new ROS2 package with the name ros2 course and a Hello
World.

cd ~/ros2_ws/src
ros2 pkg create --build-type ament python --node-name hello ros2_course

. Syntax

ros2 pkg create --build-type ament python <package name>

2. Build the workspace.

cd ~/ros2_ws
colcon build --symlink-install

B symlink

The option --symlink-install links the source scripts to the Install space, so we
don't have to build again after modification.

3. Insert the following line at the end of the ~/.bashrc file:

source ~/ros2_ws/install/setup.bash

. Import to QtCreator

New file or project — Other project = ROS Workspace. Select Colcon as Build
System and ros2 ws as Workspace path.

. Import to CLion

Set the Python interpreter to Python 3.8, /usr/bin/python3 . Add the follwong
path: /opt/ros/foxy/lib/python3.8/site-packages . Hozzuk létre a compile commands.json
fajlt a ~/ros2_ws/build konyvtarban az aldbbi tartalommal:

4. Test Hello World:

ros2 run ros2_course hello

4: Implementing a Publisher in Python

1. Navigate to the ros2 ws/src/ros2 course/ros2 course folder and create the
talker.py file with the content below.

import rclpy
from rclpy.node import Node

from std_msgs.msg import String

class MinimalPublisher(Node):

def init (self):
super(). init (‘minimal publisher')
self.publisher = self.create publisher(String, 'chatter’, 10)
timer period = 0.5 # seconds
self.timer = self.create timer(timer period, self.timer callback)
selfi=0

def timer callback(self):
msg = String()
msg.data = 'Hello World: %d" % self.i
self.publisher .publish(msg)
self.get_logger().info('Publishing: "%s"' % msg.data)
selfi+=1

def main(args=None):
rclpy.init(args=args)
minimal publisher = MinimalPublisher()
rclpy.spin(minimal publisher)

Destroy the node explicitly

(optional - otherwise it will be done automatically

when the garbage collector destroys the node object)
minimal publisher.destroy node()

rclpy.shutdown()
if name ==' main "
main()

2. Add a new entry point in the setup.py file:

‘talker = ros2 course.talker:main',

1. Build and run the node:

cd ~/ros2_ws
colcon build --symlink-install
ros2 run ros2_course talker

2. Check the output of the node using ros2 topic echo command or rqt gui .

5: Implementing a Subscriber in Python

1. Navigate to the ros2 ws/src/ros2 course/ros2 course folder and create the
listener.py file with the content below.

import rclpy
from rclpy.node import Node
from std msgs.msg import String

class MinimalSubscriber(Node):

def init (self):
super(). init (‘minimal subscriber")
self.subscription = self.create subscription(
String,
‘chatter’,
self listener callback,
10)
self.subscription # prevent unused variable warning

def listener callback(self, msg):
self.get logger().info('I heard msg: "%s""' % msg.data)

def main(args=None):
rclpy.init(args=args)
minimal subscriber = MinimalSubscriber()
rclpy.spin(minimal subscriber)

Destroy the node explicitly

(optional - otherwise it will be done automatically

when the garbage collector destroys the node object)
minimal subscriber.destroy node()

rclpy.shutdown()

if name ==' main "

main()

2. Add a new entry point in the setup.py file:

'listener = ros2_course.listener:main’',

3. Build and run both nodes:

cd ~/ros2 ws
colcon build --symlink-install
ros2 run ros2_course talker

ros2 run ros2_course listener

1. Use rqt gui to display the nodes and topics of the running system:

ros2 run rqt gui rqt gui

Useful links

* ROS 2 Tutorials
* What is a ROS 2 package?

https://docs.ros.org/en/foxy/Tutorials.html
https://docs.ros.org/en/eloquent/Tutorials/Creating-Your-First-ROS2-Package.html#what-is-a-ros-2-package

	02. Linux, ROS introduction
	Lecture
	Linux principles
	Linux commands
	ROS 1 → ROS 2
	ROS principles
	ROS workspace
	ROS package
	ROS node
	ROS build system---Colcon
	Environmental setup file

	Practice
	1: Turtlesim
	2: ROS 2 workspace creation
	3: ROS 2 package creation
	4: Implementing a Publisher in Python
	5: Implementing a Subscriber in Python

	Useful links

